Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Li-Ping Deng and Yong-Zhou Hu*

Department of Medicinal Chemistry, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310031, Zhejiang, People's Republic of China

Correspondence e-mail:
huyz@zjuem.zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.152$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[4-(Dimethylamino)benzylidene]-4-methylbenzenesulfonamide

The molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, consists of essentially planar 4-(dimethylamino)benzylidene and 4-tolyl fragments bonded through a sulfone S atom, which is approximately coplanar with both fragments. The mean planes of the $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ and $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NS}$ groups are roughly orthogonal and form a dihedral angle of $101.28(9)^{\circ}$.

Comment

N -Sulfonylaldimines attract the attention of organic chemists because of their use as synthetic reagents (Love et al., 1994). As electron-deficient imines, they find elegant application in inverse electron demand Diels-Alder chemistry (Boger et al., 1991), as well as enophiles in stereochemically controlled ene reactions (Melnick et al., 1988). Sulfonylaldimines have also been shown to possess thrombin inhibitor activity (Supuran et al., 2000). Our interest in sulfonylaldimine derivatives is driven both by their biological and by their synthetic capabilities. The title compound, (I), has been prepared and studied in order to obtain a better understanding of its reactivity.

(I)

The molecular structure of the title compound is shown in Fig. 1. All non-H atoms of its molecule, with the exception of sulfone atoms O 1 and O 2 , belong to one of the two almost planar fragments, $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ or $\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NS}$, which share the sulfone S 1 atom. The mean planes of the two groups are roughly orthogonal; they form a dihedral angle of 78.72 (9) ${ }^{\circ}$.

Experimental

4-Dimethylaminobenzaldehyde oxime (1 mmol) was refluxed in ethanol (20 ml) with sodium chloro(p-tosyl)amide (chloramine-T; 1.2 mmol) for 4 h , and the reaction mixture was then cooled to room temperature. After removal of the solvent, a yellow solid product was obtained, which was washed with water (30 ml) and extracted with dichloromethane (30 ml). The extracts were dried over anhydrous sodium sulfate and concentrated in a vacuum, and the residue was recrystallized from ethanol to give the title compound. Diffraction quality crystals were obtained by slow evaporation of an acetone/ ethanol solution at room temperature.

Received 6 June 2005 Accepted 18 July 2005 Online 23 July 2005
\qquad

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=302.39$
Monoclinic, $P P_{1} / c$
$a=17.1543(4) \AA$
$b=8.3835(2) \AA \AA$
$c=10.9679(3) \AA$
$\beta=105.96(1)^{\circ}$
$V=1516.41(6) \AA^{3}$
$Z=4$
$D_{x}=1.324 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 9315 reflections
$\theta=1.2-27.5^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=295$ (1) K
Prism, yellow
$0.30 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.911, T_{\text {max }}=0.957$
9646 measured reflections
3458 independent reflections
1718 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-20 \rightarrow 22$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w=1 /\left[0.0012 F_{\mathrm{o}}{ }^{2}+1.0 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right] /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
$w R\left(F^{2}\right)=0.152$
$S=1.00$
3176 reflections
191 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.48$ e \AA^{-3}
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$
Extinction correction: Larson
(1970), equation 22

Extinction coefficient: 88 (2)

Figure 1
View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
$0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C-H distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For the refinement, only data with $\theta>27^{\circ}$ was used.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Boger, D. L., Corbett, W. L., Curran, T. T. \& Kasper, A. M. (1991). J. Am. Chem. Soc. 113, 1713-1729.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Love, B. E., Raje, P. S. \& Williams, T. S. (1994). Synlett, p. 493. [Only 1 page?]
Melnick, M. J., Freyer, A. J. \& Weinreb, S. M. (1988). Tetrahedron Lett. 29, 3891-3894.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Supuran, C. T., Scozzafava, A., Briganti, F. \& Clare, B. W. (2000). J. Med. Chem. 43, 1793-1806.

All H atoms were positioned geometrically. The methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-O1	$1.435(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.289(4)$
S1-O2	$1.426(2)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.355(4)$
S1-N1	$1.645(2)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.447(4)$
S1-C5	$1.755(2)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.435(3)$
O2-S1-O1	$118.6(1)$	$\mathrm{C} 5-\mathrm{S} 1-\mathrm{O} 2$	$109.0(1)$
N1-S1-O1	$112.2(1)$	$\mathrm{C} 5-\mathrm{S} 1-\mathrm{N} 1$	$101.6(1)$
C5-S1-O1	$108.4(1)$	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 8$	$117.3(2)$
N1-S1-O2	$105.6(1)$	$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.9(2)$
O1-S1-N1-C8	$17.4(2)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6$	$164.4(2)$
O2-S1-N1-C8	$148.0(2)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$	$-149.5(2)$
C5-S1-N1-C8	$-98.2(2)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6$	$-77.2(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 4$	$-19.1(3)$	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$179.8(2)$

